
t 

�84 j zq (z, t) + ~ q ($, t) ( -  1~ L ~ - x L + d) d~ + , ~  (T) V ('~1 + k ~ )  q (x, "~) d'~ = 
- - a  0 

= 6 ( t ) + a ( t ) z - - f ( x )  ( I x l ~ a ,  O ~ t ~ O < o o ) .  

The solution of the latter integral equation for conditions (1.12) can be obtained by using 
the method described in [8, 9]. Thus, for a sufficiently long time of wear, we obtain 

5'(t) = nlm(-fi)Y(k 1 ~ k~T'--)q~ ~ ' ( t )=  3n~m(T)V(k I ~ k2T)eq/a ~. 

In conclusion, it should be noted that the coefficients nl and n2 must be determined 
experimentally for each specific combination of contiguous solids. 
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NUMERICAL ANALYSIS OF FRACTURE IN PLATES UNDER THE ACTION OF IMPACT LOADS 

N. N. Belov, A. I. Korneev, 
and A. P. Nikolaev 

UDC 539.375 

Calculation of fracture in solids with limited dimensions under the action of impact 
loads can be considered by formulating a macrofailure criterion. Fulfillment of such a cri- 
terion in a particle of the material signifies its breakdown. In the presence of a complex 
wave interference pattern in the numerical solution, such a criterion is satisfied in entire 
regions. This requires formulation of a model of the fractured solid in numerical calcula- 
tions [i, 2]. 

There is another approach to calculating the disintegration of solids under detonation 
or impact loads, which is based on the porous solid model [3-6]. We shall write below the 
basic equations of a compressible elastoplastic medium with pores and investigate numerically 
the disintegration process in plates under the action of dynamic loads. 

i. We shall assume that spherical defects with the radius So exist in the solid. We in- 
troduce a spherical coordinate system with the origin in the spherical cavity, whose present 
radius is denoted by a. Assume that the stress o r = --p acts at the distance b from the cav- 
ity. The porosity is characterized by 
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= v / y ~  = b3/(b 3 - ~9,  (i. i) 

where V is the volume of the material containing pores and V m is the matrix volume. Let us 
determine the kinetic equation of pore growth, i.e., the variation of ~ in time under the ac- 
tion of the applied stress, assuming that the pores remain spherical during the deformation 

process. 

Under the assumption of incompressibility of the matrix material, the basic system of 

equations in the spherical coordinate system is given by 

Pmdu/dt = 0%/Or + 2(% -- ~o)/r, (i. 2) 

Ou/Or + 2u/r  = O, ~ - -  ~o = Y + nolVl~-17 , 

where u is the radial velocity component, y = 3m/3r -- u/r, ~r and ~ are the components of the 
stress tensor, Y is the yield point, ~o and n are the material constants, and Pm is the den- 

sity of the matrix material. 

The boundary conditions assigned at the outer and inner boundaries are 

%(b, t) = - ~ p  + (~ - t)p~, %(a, t) = - p ~ ,  ( 1 . 3 )  

where pg is the gas pressure inside the cavity. 

Integrating the second equation in (1.2) with respect to r, we obtain 

= c ( t ) /~<  ( 1 . 4 )  
t 

After repeating the integration and introducing a new function f(t)=--3~C(t)dt , we write 
0 

~ - ~3 o = - f (t), ( 1 .  5 ) 

whence, with an allowance for (i.i), we find 

/(0 = b~(~0 -- a)/a = ao(ao -- ~)/(~o -- i) = a3(ao -- a)/(a -- i). 

We introduce a new function 

�9 ~( I C ~(t) 
~--  Crt) + 2 r4 ' 

(1 .6)  

and then 

du/dt = aWOr. (1 .7)  

By substituting ~/3r for du/dt in the first equation of system (1.2) and performing inte- 

gration with respect to r, we obtain 
b 

[q)(b, t)--qD(a, t ) l = - - a ( p - - p r ) + 2  [](~r--GO dr. 9~ 
r (1.8) 

a 

3 ~ 

Using the relationship C(t) f'(t)_ a0 a and (1.6), we can transform, as in [6], 
3 3 ~o  - -  i 

hand side of the equation to obtain 

a~pm 8 

the left- 

[2 0-413 _ u-41s]} " 
- - 6 -  [(~ - = ?~ ( L  ~,  ~,  %) p~.  

We substitute the third equation of system (1.2) in the second term on the right-hand side 
and pe r fo rm the  i n t e g r a t i o n ,  c o n s i d e r i n g  t h a t  a l l  of  the  m a t e r i a l  a round the  pore  i s  in  t he  
plastic region. We obtain 

b 

y~r--~O 2 a ~ �9 " ~ n - - ( ~ - - l ) n  
2 " 7 - - - -  dr : -• -~- Y In ~ + I ~ f n - I  ~ (~ _ i)n~l~ 

a 

or, finally, 
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�9 2 ~ 2 NO ~ n - - ( ~ - - t )  r~ 

The term on the left-hand side of (1.9) represents the inertial resistance to changes in 

~; according to the estimates given in [6], it is smaller than the terms on the right-hand 

side by a large factor. 

Y 
We introduce the quantity Ap:p!--~-~]n~--i, assuming that pg = 0, and we then obtain 

the following from (1.8) and (1.9): 

1 I 

~,-;-(-Ap) i) ~ ~r ; > o ,  A p < o ,  

- (i.i0) &= 
I I 

~ o A p  - ,~ ~r ; < o ,  Ap>0. 
i - -  

The quantities no, n, and Y are the constants of the material. Relationship (l.10) is the 
kinetic equation for determining ~. When ~ reaches a certain critical value ~,, the material 
fails. 

2. We readily satisfy ourselves [7, 8] that, in the presence of gas in the pores pg, 
�9 m 

the components of the stress tensors in the matrlx oij and the porous medlum oij are related 
by the expression 

o~=~%]+(~--I)~5{j. (2.1) 

Representing the stress tensor in the matrix and the porous solid in the form of the 

spherical and the deviator parts, we write 

~ = ~ s ~ ] .  ( 2 . 2 )  pm=ap--(~--l) pv, ,u 

On the basis of (2.2), we shall express the Mises yield criterion for the matrix material in 

terms of the deviator components of the stress tensor for a porous medium in the following 
form: 

s~TsiJ= [Y~' T)/a]~" ( 2 . 3 )  

Assuming that the principle of minimum work of the actual stresses at plastic strain incre- 
ments holds for a porous solid [9], we write an expression relating the components of the de- 
viator of the strain rate tensor and the deviator of the stress tensor which is similar to that 
given in [i0], 

2 ~ t ~ i j =  D/Dtsi~+ ~sij, (2.4) 

where D/Dt denotes a derivative in the sense of Jaumann, &ij are the tensor components of the 
strain rate deviator in a porous medium, and D is the sheer modulus. 

The value of I is determined by means of condition (2.3), and, in the absence of plas- 
tic strain, I ~ 0. The expression for I can readily be obtained by multiplying both sides of 
(2.4) by sij. In accordance with [ii], the following relationships can be established be- 
tween the components of the deviators of the strain rate tensors and the first invariants of 
the strain rate tensors in the matrix and the porous solid: 

u : e i j  1- -  7 0 - I  , = O--  ~ .  

In order to determine the spherical component of the stress tensor in the porous solid, we use 
the equation of state for the matrix material in the Mie--Grueneisen form: 

pm = O(V~) + ?mE m/V~. ( 2 . 6 )  

The pressure in a porous solid changes due to variations in the specific volume and specific 
energy of the material and also variations in the pore volume or, which is the same, changes 
in ~. Let us determine the pressure increment in the porous solid, assuming that pg = 0 and 
Ym/Vm = To/V = constant neglecting the increment in the surface energy of pores: 

d~[ Yo ] I [ OQ ~V • ( 2 . 7 )  

Finally, we rewrite (2.7) in the following form: 
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dP = -- --~ P -~ ~- [ O-~m ~ 2 ] J- -~o dE ' ( 2 . 8 )  

where p, V, and E are the pressure, volume, and internal energy of the porous solid, respec- 

tively. This expression constitutes the differential relationship for determining the value 

of p in the porods medium. 

The equations of motion of the porous continuous medium are written as follows: 

0_ f U d V + C l t . n d S  :O;  (2  9) 
8 t , , . O  

(2.1o) 

V S 

lIP e II II~'U / 

where ~ is the density,.u = uZei is the velocity vector, ei are unit vectors of the chosen 

coordinate system, u =alJeiej is the stress tensor, e • E + u'u/2 is the total energy, and n 

is the external vector of the normal to the surface S bounding the vdlume V. All the quanti- 

ties in (2.10) pertain to a porous medium. 

Equations (2.1)-(2.5) and (2.8)-(2.10) in combination with the kinetic equation (i.i0) 

for determining ~ represent a closed system of equations for the porous medium model. 

3. We shall examine, within the framework of the proposed model, the numerical solutions 

of two -dimensional problems of collision between two disks and detonation of a cylindrical 

explosive charge on the surface of a plate. We shall use the experimental data from [12] in 

calculations pertaining to the collisional problem. We use the following physicomechans 

characteristics of EI 712 steel: Po = 7.83 g/cm 3, Y = 0.64 GPa, ~ = 79 GPa, n = 0.55, ao = 
1.0006. We use the equation of state of the matrix material in the form given in [13]. 

The calculation data, obtained by means of the method described in [14], are given in 

Figs. 1-3. Figure 1 shows the velocity of the back surface of the barrier as a function of 

the process time for initial impact velocities of 86, 215, 258, and 320 m/sec; these veloci- 
ties pertain to curves 1-4. The dashed curves represent the experimental relationship [12]. 

Curve 1 indicates that there is no fracture in the barrier, while curves 2-4 reflect the de- 

velopment of microfractures in the material. The buildup of microfractures causes an increase 

in the porosity ~. The breaking stress diminishes with an increase in a. The material is 

considered to have been destroyed when the relative volume of pores ~ = (~ - l)/a in the cleav- 

age plane reaches the maximum value ~, = 0.3. 

Figure 2 illustrates the distribution of the relative pore volume in the barrier along 

the symmetry axis at the end of readings. Curves 2-4 correspond to curves 2-4 in Fig. i. 

It should be noted that during the collision between disks at an initial velocity of 

215 m/sec a region of material where pores were activated and were growing (~ > ~o) appeared 
at the center of the barrier. However, the relative pore volume in this region was insuf- 

ficient for fracture to take place. 

The porosity increases as the impact velocity in this zone increases. For an impact 

velocity of 258 m/sec, the region in the material where the pores are activated occupies 
more than one-half of the barrier. Maximum porosity occurs only at the target center. A 
further increase in the impact velocity results in a reduction of the material zone where 

> ~o and an increase in the zone where ~ reaches its maximum value. 
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F~gure 3 shows the deformation and disintegration pattern of the disks at 6 Dsec for an 
initial impact velocity of 258 m/see. The solid curves represent the isolines of the relative 
pore volume. The maximum porosity occurs in a row of cells located at the barrier center in 
a direction perpendicular to the direction of impact, where the principal crack develops. The 
location of the crack coincides with its location determined in experiments [12]. 

We shall use the numerical method described in [15] for solving the problem of explo- 

sive charge blasting at the surface of a plate. For ~o = ~ = i, Y = ~ = 0, the system of equa- 
tions (2.9) and (2.10) is transformed into a system describing ideal gas behavior. 

The equation of state of the detonation products is given by 

p = ~Ep ~-B~p 4 ~ C~ ~1~, 

where ~, B~, C~, and ~ are the constants characterizing the explosive [16]. 

The Chapman--Jouguet parameters were assigned at the front of the detonation wave in calcu- 
lating the detonation of the explosive. The sliding algorithm proposed in [15] was used at 
the contact boundary between the metal and the detonation products. We shall use the ex- 
perimental data from [17] for specific calculations. 

Figure 4 shows the pattern of scattering of the detonation products at Ii ~see and pro- 
vides the isobars in the plate and the detonation products. The arrows indicate the direc- 

tion of scattering of the detonation products. The arrow length characterizes the velocity 
on a chosen scale. 

Fig. 5 
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The final pattern of plate deformation and disintegration that we obtained (Fig. 5) agrees 
with the experimental pattern [17]. The black zones denote the regions in the material where 
has reached its maximum value ~,, while the hatched areas denote zones where ~ > So, but 
~<~,. 

Two disintigration zones are discernible in both calculations and experiments. The prin- 
cipal zone is located at the back surface of the plate (zone of rear spallation). The other 
zone of fractured material is located under the crater. 
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